

Max.Marks:80

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD II.B.TECH - I SEMESTER REGULAR EXAMINATIONS NOVEMBER, 2009 DIGITAL LOGIC DESIGN (Common to CSE, IT, CSS)

Time: 3hours

Answer any FIVE questions All questions carry equal marks

1.	a) Express the Excess-3 code as a Gray codsb) What is meant by Self complementing codes? Give an example and explainc) What are the properties of Boolean algebra?	[8+8]
2.	a) State and prove De'Morgans theoremsb) Prove that NAND and NOR gates are universal gatesc) Design a 2 input XOR and XNOR using NAND and NOR gates respective using only 4 gates each.	ly by [16]
3.	a) Design a FULL adder / subtractor unit using only NAND gates b) Minimize the given function $f = \sum (1, 2, 3, 5, 7, 9, 11, 13)$ use K map method.	[8+8]
4.	a) Design a Priority encoder of 4 bit.b) Write HDL code to model the above encoder.	[8+8]
	a) Design a finite state machine which can detect the sequence 0010 by using 3 pps.b) Write HDL program in Behavioral model to design the above sequence details.	[8+8]
6.	a) Design an asynchronous modulo-6 counter. Use SR flip flop in the design.b) Write HDL program to model in structural model.	[8+8]
7.	a) Design a 4 bit number square generated using ROM.b) Write a brief note on sequential programmable devices.	[8+8]
8.	Write brief note ona) Static and dynamic hazards.b) Flow table generation in asynchronous limits in pulse mode.	[8+8]
